본 글은 제가 경험해본 코드 중 좋은 구조를 가졌다고 생각되는 코드에 대해 개인적인 스타일 및 주관으로 수정하여 정의한 것입니다. 구현부는 없습니다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | typedef unsigned short uint16; typedef unsigned char uint8; template < class StorageType> class Interpolator; template < typename Storage> struct KeyNode { Storage vlaue; float time ; }; template < class Storage> class KeyTrack { typedef KeyNode<Storage> TimeValue; public : void Init(); inline void AddKey( const float time , const Storage& value); inline void SetKey( const uint16 keyNr, const float time , const Storage& value); inline void RemoveKey( const uint16 keyNr); void ClearKeys(); Storage GetValueAtTime( const float currentTime, uint16* cachedKey=NULL); inline TimeValue* GetKey( const uint16 nr); inline TimeValue* GetFirstKey(); inline TimeValue* GetLastKey(); inline float GetFirstTime(); inline float GetLastTime(); inline uint16 GetNumKeys() const ; inline TimeValue* FindKey( const float curTime); void SetInterpolator(Interpolator<Storage>* newInterpolator, bool needDestroy = true ); inline Interpolator<Storage>* GetInterpolator(); protected : std::vector<TimeValue> mKeys; Interpolator<Storage> mInterpolator; bool mDestroyInterpolator; //< flag to auto delete }; // 시간 없어서 정리 못함 template < class DataType> class Interpolators { public : // support type enum { TYPE_LINEAR = 0, TYPE_HERMITE, TYPE_BEZIER, }; Interpolators( void ) {}; virtual ~Interpolators( void ) {}; virtual DataType Interpolate( const uint32 startKey, const float timeValue, KeyTrack<DataType>* interpolationSource) const = 0; virtual uint32 GetType() const = 0; }; template < class ValueT> class LinearInterpolator : public Interpolator<ValueT> { public : LinearInterpolator( void ); ~LinearInterpolator( void ); virtual ValueT Interpolate( const uint32 startKey, const float timeValue, KeyTrack<ValueT>* interpolationSource) const { KeyNode<ValueT>* firstKey = interpolationSource->GetKey( startKey ); KeyNode<ValueT>* nextKey = interpolationSource->GetKey( startKey + 1 ); return (1.0 - timeValue) * firstKey->vlaue + timeValue * nextKey->vlaue; } virtual uint32 GetType() const { return TYPE_LINEAR; } }; //< need template specialization class LinearQuaternionInterpolator : public LinearInterpolator<Quaternion> { Quaternion Interpolate( const uint32 startKey, const float timeValue, KeyTrack<Quaternion>* interpolationSource) const { KeyNode<Quaternion>* firstKey = interpolationSource->GetKey( startKey ); KeyNode<Quaternion>* nextKey = interpolationSource->GetKey( startKey + 1 ); return slerp(firstKey->value, nextKey->value, timeValue); } }; template < class ValueT> class HermiteInterpolator : public Interpolator<ValueT> { virtual ValueT Interpolate( const uint32 startKey, const float timeValue, ) const { // [ 2 -2 1 1] [a] //[u3 u2 u 1] [-3 3 -2 -1] [b] // [ 0 0 1 0] [ta] // [ 1 0 0 0] [tb] // precalc u, u2 and u3 const float t = timeValue; const float t2 = t * t; const float t3 = t2 * t; return ( 2*t3 + -3*t2 + 1) * this ->mInterpolationSource->GetKey( startKey )->GetValue() + (-2*t3 + 3*t2) * this ->mInterpolationSource->GetKey( startKey + 1 )->GetValue() + ( t3 + -2*t2 + t) * mTangents[ startKey ] + ( t3 + -t2) * mTangents[ startKey + 1 ]; } virtual void Init(Interpolator<ValueT>* interpolateSource); // tangent initialize. { assert ( this ->mInterpolationSource); // make sure we have a keytrack assigned // allocate the new tangents const uint32 numKeys = this ->mInterpolationSource->GetNumKeys(); mTangents = (ReturnType*)MCore::Realloc(mTangents, sizeof (ReturnType) * numKeys, MEMCATEGORY_MOTIONS_INTERPOLATORS); // calculate all tangents for (uint32 i=0; i<numKeys; ++i) { // if there is no previous or next key if (i==0 || i==numKeys-1) { ReturnType tangent; MCore::MemSet(&tangent, 0, sizeof (ReturnType)); mTangents[i] = tangent; } else // if there is a previous or next key { const ReturnType& prevValue = this ->mInterpolationSource->GetKey(i-1)->GetValue(); const ReturnType& value = this ->mInterpolationSource->GetKey(i )->GetValue(); const ReturnType& nextValue = this ->mInterpolationSource->GetKey(i+1)->GetValue(); mTangents[i] = (0.5 * (value - prevValue)) + (0.5 * (nextValue - value)); } } } ValueT& GetTangent( const uint32 keyNr); protected : ValueT* mTangents; /**< The tangent vectors, one for each key. */ KeyTrack<ValueT> mInterpolationSource; }; // the interpolation method template < class StorageType> MCore::Quaternion HermiteQuaternionInterpolator<StorageType>::Interpolate( const uint32 startKey, const float timeValue) const { // get the two quaternions MCore::Quaternion a = this ->mInterpolationSource->GetKey( startKey )->GetValue(); MCore::Quaternion b = this ->mInterpolationSource->GetKey( startKey + 1 )->GetValue(); // check if both quaternions are on the same hypersphere or not, if not, invert one if (a.Dot(b) < 0.0) a = -a; // [ 2 -2 1 1] [a] //[u3 u2 u 1] [-3 3 -2 -1] [b] // [ 0 0 1 0] [ta] // [ 1 0 0 0] [tb] // interpolate, and take the exponent of that, which is the interpolated quaternion const float t = timeValue; const float t2 = t * t; const float t3 = t2 * t; return (( 2*t3 + -3*t2 + 1) * a.LogN() + (-2*t3 + 3*t2) * b.LogN() + ( t3 + -2*t2 + t) * this ->mTangents[startKey] + ( t3 + -t2) * this ->mTangents[startKey+1] ).Exp().Normalize(); } |